X
NPSCS-92-018

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A261 367
T \ R

ELECTE
MAR 9 1893

Research Directions in Software Analysis,
Synthesis and Certification

Lugi

Approved for public release; distribution i1s unlimited.

Prepared for:
0 7 7 ne

Naval Postgraduate School
Monterey, California 93943

93-04964
BRI

D

NAVAL POSTGRADUATE SCHOOL

Rear Admiral R.W. West,

Supenintendent

Jr.

Monterey, California

HARRISON SHULL

Pros ot

This report was prepared with research funded by the Naval Rescarch Funds provided by the Naval

Postgraduate School.

Reproduction of all or part of this report 1s authorized.

This report was prepared by:

Reviewed by:

= Z

THOMAS WU
Associate Chairman for
Technical Research

LUQL

Assewcrate Profossor

Released by:

47 x«r«//u/' .
PA[I,ND\RTO
Dean of Resecarch

REPORT DOCUMENTATION PAGE

Ta HEPCRT SECURMTY CIASSIPITATIOR
UNCLASSIFIED

1 HEBTMCTivE MARA NG

a L AUTHORITY

3 IS TR TN AVRILAT L 111 L+ ME et

25 DECTASSIFICATOR SOWREHADIRNG SCREDUTE

Approved for public release,
disiribunion 1s unhimned

4 FERFORMING ORGARZA TSN HErSHY NUNBENS; X

Naval Postgadu.xtc School

Vs Naget U eRolatel b MW M 2 l0 ol MO Vo) S0
NPSCS-92-018
€a NANMEOF PERFORMING ORGARIZATION J68 OFFt SVREST | 7a RANE Sr WY T T AN T,
Computer Science Dept. (1 appicavie:
Naval Posigraduate School s
8¢ ADDRESS (City. State, and ZIP Code; e ADDRESS Oy Srawe aro J0F Jooe
Monterey, CA 93943
B2 NANE OF FURDING/SPORSORING S
ORGAN 1ZAT i} appacabia;

8¢ ADDRESS (City, State, and ZIP Code;

Monterey, CA 93943

TO S HLE R R IR T s S
PRUlmiAM MUt LT MRS Véiomr, ok
ELEMENT WO NO N CCESSON NG

1. TITLE finciude Secunty Classiicanon)
Research Directions in Software A

nalysis, Synthesis and Certification

T2 PERSONAL
Luqgi

EITRORS)

133 TYPE OF REPOUKRT

736 TETOVERED

FROM

1O

14 DA€ OF REPORT /Year Mo Ly

1992, December, 31

TEOFAGE Llh

13

16. SUPPLEMENTARY NOTATION

17

COSATI CODES

18 SUBJECT TERMS rContnue on reverse if necessary and identy by tiock number;

FIELD

GROUP

SUB-GROUP

tion.

19. ABSTRACT {Continue on reverse if necessary and idenbly by block number)
This paper presents a view of research directions relevant 1o producing reliable and uscful software svstems. Ap-

propriate research goals are identified for achieving improvements in software quality via formalization and com-
puter aid for software analysis, synthesis, and centification tasks at all states of sofiware development and evolu-

THACT

21 ABSTRACT SECUHITY CLASSIFICATION

@ UNCLASS!F%ED/UNUM[TED (] SAME AS RPT.

[] OTIC USERS

UNCLASSIFIED

I'WBFWE%MDMDUAL
Lugi

22b TELEPHONE (include Area Code)

(408) 656-2735

22¢ OFFlgE SYMBOL
CSlg

Research Directions in Software Analysis, Synthesis and Certification

Lug:
Computer Science Department iy

Naval Postgraduate School A B 49 1Y

Montrey, CA 91943

ABSTRACT

software systems. Appropriate rescarch goab are denufied for achieving unprosements o
software quality via formalizaton and computer asd for software anabysiso syithions, amnd
certification tasky at all stages of software development and evolution

This paper presents & view of resecarch duectons relevant 10 producing rebable amd uscful ?\\

1. Introduction

Systematically producing and adapting rehable software that meets the necds of
its clients is a dominant software engincening problem in the 19905 Rehiabiity of
software products 1s a concern particularly tor systems whose malfunction may result
in lost lives, injurics, or financial losses. It is practically impossible to produce error-
free software systems that solve real (complex) problems by purely manual develop-
ment methods because human error rates are too high. Sound automatable methods for
software analysis, synthesis and certification are nceded o bndge this gap For pracu-
cal impact, these methods must fit together to cover the entire software development
and evolution process. Software evolution (sometimes called mamntenance) is @ mayor
concern in this conwxt because crrors are often introduced as a system 1s modificd.
and evolution typically accounts for more than half of the effort of developing and
supporting a software system.

Reliability concemns indicate that we need automated assistance in all stages of
software development, but complete automation of software development and evolution
is not feasible in the near future. Somc realistic research goals in this situation
include:

(1) Formulating a consistent set of accurate mathematical models for a set of sub-
problems covering the software development process. This is needed to enable
integration of the methods and tools for solving problems related to different
aspects of software development.

(2) Developing and certifying the correctness of completely automated synthesis
methods for the tractable subproblems. In cases where this is possible, this
approach provides both reliability and productivity gains.

(3) Developing interactive synthesis methods that guarantee absence of errors for less
tractable subproblems. This approach combines the benefits of human creativity
with the accuracy provided by computer application of sound formal methods.

(4) Improving analysis and certification methods capable of detecting and diagnosing
errors for subproblems that cannot be covered by error prevention techniques. If
aspects of the process must remain manual, then automated assistance for locating
and removing errors and for certifying that no errors are left are nceded for those

&, viabity (othes

LT s Y
LT H

S s i e

S —

P T ——

PRI

aspects.

Most of the past work on improving software reliabihity has followed the lust
approach. This direciion has enabled researchers to provide some usetul wols without
waiting for full understanding of all of the problems involved. This direcuon s also
the least desirable one for the future because the search for errors is often very labor-
intensive and because 1t s dithicult o predict how many uterations will be needed o
eliminate all of the errors. Thus error detection work 1s most reasonable for those
aspects of software development for which error prevention techmigques are not feasible

2. Assessing the State of the Art

Past approaches have constdered isolated subproblems ot the real sottware reha
bility problem, mostly at the code level.

Work on software testing has produced a few sohid results in additon o many
heuristics whose eftectuveness s difticult to evaluate. Successful execution of test seis
constructed by random sampling from a probability distnbution can provide lower
bounds on the mean number of exccutions between failures af actual anput svalues
correspond to the given probability distribution [6]. This kind of statistical reliabihiy
assurance is sufficient in cases where input distnibutions are predictable and non-zero
failure rates can be tolerated. Statistical assurances are not sufficient for entical apph-
cations where even one failure is unacceptable. Statstical reliability measures cun also
be misleading if real input distributions are unstable or unknown, because there exist
input distnbutions with high failure rates for any deterministic program that s not
completely error-free.

For some specialized classes of programs, there exist methods for constructing a
finite set of test cases whose successful execution can establish correctness of the pro-
gram for all possible inputs [4,6]. This is not possible in the general case: tesung can
show the presence of software errors but it cannot certify their ahsence for uncon-
strained programs.

Work on program verification has sought to construct and mechanically check
mathematical proofs that given programs meet given specifications for all possibic
inputs. Mcthods for doing this exist, but this technology is not yet mature for practical
applications, particularly with respect to tool support and range of apphicability of the
formal models. Weaknesses of current technology include the following.

(1) Proving that a program satisfies a given specification is useless without some
assurance that the specification is valid, i.e. that it accurately represents the needs
of the users of the program. Validation of specifications is a major task and sys-
tematic methods for doing this are not well developed.

(2) It is impossible to prove that an incorrect program satisfics its specification. Past
studies indicate that it takes much more effort to construct code that fully meets a
specification than it docs to mathematically verify a correct program [5].

(3) Current systems require considerable human assistance, and the mathematical
skills required to use these systems are beyond the abilities of many practicing
software developers.

3. Future Opportunities

More recently proposed approaches focus on error prevention rather than ceror
detection. Error prevention is possible both in cases where a software development
task can be completely automated, and in cases where an automated tool realizes all of
the designer’s decision’s in constrained ways that do not allow the designer w0 make a
mistake, or that eliminate some kinds of mistakes. Some examples are meaning-
preserving software transformations, which prevent divergences between specifications
and the code [2]. and syntax-directed editors, which prevent the creation of programs
that do not conform to the syntax of the programming languapes.

It is commonly believed that error prevention 1s more difficult than error detec-
tion, but this i1s not always the case. For example, checking whether an eguational
specification for an abstract data type is consistent and complete is an undecidable
problem. Nevertheless, there exists an error prevention technique that guarantees that
every specification that can be gencrated according to the rules 18 complewe and con-
sistent. These rules are simple enough to be applied and checked by a ext edwor, and
they are sufficiently loose 0 accommodate the styles of specification that nommally
occur in practice [1]).

Software development deals with information of many different kinds. at different
levels of abstraction. We summarize some of the types of software analysis, synthesis
and certification problems that should be investigated for several levels of software
representations in Fig. 1.

3.1. Requirements Level

The requirements level establishes the goals for a proposed system and formulates
models of the problem and the expected environment of the proposed system.

An important aspect of requirements analysis is achicving and maintaining con-
sistency as the analysts discover and record the requirements. A promising approach
to this problem is providing automated support for calculating and maintaining derived
properties and consequences of the requirements, and for tracing dependencies to
determine the causes of conflicts and inconsistencies. Better algorithms for this pro-
cess and primitives suitable for expressing and effectively maintaining dependencies in
software requirements should be investigated.

Another aspect of requirements analysis is modeling the environment of a pro-
posed system. Especially for embedded software systems, an accurate formal charac-
terization of the system to be controlled is essential for assessing the effectiveness of
the control software. The environment of such a system must often be simulated or
otherwise formally analyzed to enable safe and meaningful testing or analysis of the
embedded software system. Systematic methods for validating and testing the formal
models of the environment against the properties of the actual physical systems they
represent are needed. Both analytical and experimental methods should be explored to
establish that the formal environment models used in other software analysis and test-
ing activities are adequate representations of reality.

Many critical software systems are embedded systems, which mcans that the
software is part of a larger system. Thus an essential part of checking the adequacy of

Level Type of Analysis/Synthesis

Requirements consistency: truth maintenance
model validation: simulation and proof
subgoal venfication: prototyping and proof

Specification adequacy: prototyping, operational scenanos
consistency: type and domain checking
safety: proofs
validation: paraphrasing, views, simplification

Design verification: proof of decomposition
liveness: deadlock and starvation checking
robustness: impact of degraded hardware
design for testing: control and observation
performance: complexity analysis
feasibility: satisfiability proofs

Coding synthesis: meaning-preserving transformations
performance: time and space analysis
liveness: proof of (clcan) termination
real-time: analysis of scheduling methods
generic units: analysis of component familics
error detection: complete test sets
error location: weakest preconditions

Evolution change imnact: symbolic differences
restructuiing: meaning-preserving transformations

error prevention: change merging

Fig. 1 Types of Software Analysis and Testing

the requirements for the software is checking that any system meeting the requirements
will be sufficient to meet the requirements for the larger system in its intended opera-
tional context. Hard real-time constraints in an embedded system are often motivated
by the requirement to control the larger system to ensure it remains within a given
range of operating states. For example, the cycle rate of an auto-pilot must be
sufficiently high to ensure that the airplane remains within a given radius of its
planned position at all times. At the current time, lower level requirements are usually
formulated based on past experience and informal guidelines rather than on systematic
derivations or verification procedures with respect to the higher level requirements.

Both formal and experimental methods for sysiematically establisling such propertics
are needed. Required supporting technology for this process includes computer-aided
construction of prototypes [7].

3.2. Specification Level

The specification level ts concerned with dehining the interface of a proposed sys-
tem, both at the functional and the command representation levels.

The primary measurc of the adequacy of a specified interface is whether 1t will
meet the needs of the user. This question 1s best addressed by experimental rather
than analytical techniques because it addresses the problem of checking the correspon-
dence between a formalized specification and the actual and informal needs of the
users. One way of approaching this problem is via prototyping and operational
scenarios. Operational scenarios are common tasks in the customer’s problem domain.
expressed in the user’s terms. Such scenarios serve as st cases for the specifications.
whose purpose is to determine whether a proposed interface is adequate for carrying
out all of the tasks the users will have to perform. Such a test passes if the facilities
provided by the proposed system interface can be combined to carry out the tasks in
the operational scenario, and provide a systematic means for exercising a prototype in
a demonstration to the users. Systematic methods for deriving sets of scenarios from a
requirements document, coverage critena, and experimental evaluation of the effects of
such coverage criteria on change requests to the affected interfaces during system
maintenance should be investigated.

A related concem is validating a formal specification, to ensure that it correctly
captures the intentions of the users. While this is an informal process, it can be aided
by formalized and automatable procedures. GLymbolic execution and operational
scenarios can be applied to this problem. Proof techniques can also be used in this
way [8], by obtaining a list of expected system properties and then proving that the
formal specification has those properties. Other relevant processes involved are para-
phrasing, projection, and simplification. Paraphrasing is the process of transforming a
formal specification into a form that a user can understand, while preserving its mean-
ing. Projection is the process of extracting the parts of a specification relevant o a
particular user or task, while hiding other details. Simplification is the process of
transforming a formal specification into a simpler form with an equivalent meaning.
These three processes can be combined to help users sclectively review formal
specifications using representations they can understand. The research questions in this
area concern certifying the transformations to ensure they preserve the meaning of the
specification and experimentally evaluating the effectiveness of different represcnta-
tions for communicating with untrained users.

Consistency of a specification is another common concem, especially for large
and complex systems. Since consistency is a property of a formal document, it can be
addressed by analytical techniques. Some aspects of consistency checking that need
further development are type and domain consistency checking. Type checking at the
specification level is more difficult than the comresponding problem at the code level
because types can have subtypes defined by semantic considerations. Domain

checking is the process of ensuring that partial functions or predicates are used only
within their domain of definition, and that partially defined generic unils are mnstan-
tiated only with actual parameters in their respective domains of definition. Logical
inference capabilitics are necessary for both of these kinds of specification analysis.

Another concem with formal specifications is checking satety propertics. For
example, past rescarch projects have been concerned with whether a proposed operat-
ing systems kernel satisfied certain security propertics, such as the impossibility of
transmitting classified information from a process with a high secunity classification o
an unauthorized process. The goals of safety analysis procedures are to idently cases
where the specifications allow behaviors violating the safety properties, or o certify
that no such cases exist. Systematic procedures for this process are needed because
the connection between a formal specification and a safety property can be quite
indirect and can require extensive reasoning and analysis to establish.

3.3. Design Level

The design level is concerned with the decomposition of a problem into a
hierarchical structure of independent modules. Such a decomposition consists of inter-
connection information and formal specifications for the components.

The primary reliability property of a decomposition structure is whether it will
correctly realize the specification at the next higher level. This problem is subject to
mathematical proof techniques. The problem is easier to solve than the general proof
of correctness problem at the code level because the module interconnection language
is can be considerably simpler than a programming language. Most of the analysis can
be carried out at the specification level, since the problem is to check whether a given
combination of specified components will satisfy the required properties of the compo-
site. Research questions in this area involve the best ¢hoice of interconnection primi-
tives to support effective and efficient inference proceunres, and formal characteriza-
tions of interfaces and resource models sufficient to ensure correctness of decomposi-
tions in the presence of distributed processing and hard real-time constraints.

Another type of property of interest for parallel and distributed systems is live-
ness. Techniques for checking for potential deadlock or starvation conditions in such a
design are desired. Deadlock detection appears to be decidable for asynchronous
models and undecidable for synchronous ones. Some research problems in this area
include developing solutions to the problem in the error prevention style, and develop-
ing better symbolic techniques for deadlock detection and diagnosis. The problem
with past finite-state techniques for deadlock detection is that practical applications
often have state spaces that are much to large for enumeration techniques to be applied
in practice. Formal approaches that can avoid state enumeration via induction and log-
ical reasoning should be developed further.

An important class of analysis involves the effects of degraded hardware on the
properties of a design, relative to a mapping of software components to hardware com-
ponents. This kind of analysis is essential for achieving reliable fault tolerant systems,
especially those with distributed implementations. In addition to certifying that pro-
posed configurations realize given degrees of fault tolerance, automatic derivation of

the implied constraints on allocation of software functions to hardwure units is desir-
able.

Evaluation of a design for time and space performance is another kind of
software analysis that has potential importance. Automated support for classical com-
plexity analysis is needed, along with estimates for the ranges of input sizes and con-
stant factors determined by classes of algorithms.

A final consideration is satishiability. The sausfiability of a specificaton can be
established if an implementation can be produced and certified to be correct. How-
ever, it would be useful to determine whether it is possible to satisfy a given
specification before the impilementation is attempted, and in cases where it is not, to
characterize the set of inputs for which the specification is impossible o meet
Analytical techniques for constructing weakest infeasible preconditions characterizing
this set of inputs should be explored. Since it is possible to derive programs from
sufficiently constructive proofs of the satisfiability of a specification. further rescarch
along these lines has good potential for producing a practical impact.

3.4. Code Level

The best way to achicve quality is to systematically prevent errors. Automatable
methods for synthesis of efficient code from formal specifications via meaning-
preserving transformations should be investigated. Of particular interest are systems
that can choose transformations without explicit human guidance, or with guidance
from general declarative advice that can be formulated without explicit reference to the
details of the current state of the derivation and does not require explicit human
interaction during the derivation process.

Accurate performance analysis requires detailed code and knowledge about pro-
perties of a particular compiler and target machine. Generic table driven methods for
performing such analysis, and for relating design-level properties of abstract algorithms
to detailed properties of actual machine-level implementations and compiler optimiza-
tions is needed to accurately certify correctness of programs with hard real-time and
real-space constraints. Research problems in this area include formal modeling of
implementation-specific properties and constraints in ways that can be combined with
implementation-independent analyses of abstract programs.

Another problem is certification of clean termination. This problem gains new
dimensions in parallel and distributed systems, where termination can be influenced by
scheduling properties and hardware failures. Research questions include models and
techniques for analyzing programs in these domains.

Analysis of real-time systems includes analysis of scheduling methods to deter-
mine whether a proposed scheduling discipline will meet specified deadlines under all
possible operating conditions. Research questions in this area have flexible scheduling
methods, the effects of shared resources, overload resolution policies, and remote com-
munications as major concerns.

The problem of certifying generic code units or families of related programs gen-
erated by meta-programming schemes is a major concern in systems for managing
reusable software. A software component is most effectively re-used if it is flexible

and can be adapted to many needs. Such a component often corresponds 10 a family
of related program units with an unbounded number of elements. The problems of
testing and analyzing the reliability of such program families is an important reseaich
question.

Classical testing approaches need more foundational work on the construction of
complete test sets. A complete test set is a set of test cases which 1s guaranteed w0
detect any error in a particular well-defined class of errors. More work is needed on
the construction of finite complete test sets, an on charactenizing the set of faults
whose absence is guaranteed by successful execution of the test set. Such work should
include automated techniques for constructing the required test oracles from the formal
specifications of the code to be tested. A weakness of statistical approaches to testing
is the size of the test set required for certitying that systems have low failure frequen-
cies, which makes manual examination of test results impractical. To apply these tech-
niques in practice, we need automated methods for deciding whether or not the outputs
produced by a test case conform to a specification.

An aspect of code analysis of great practical importance 1s error location. Onc
approach to this problem is to derive weakest preconditions for suspected pieces of
code, to characterize the space of inputs for which the code fails. This and other
approaches should be refined and evaluated to determine their practical utlity.

3.5. Evolution Aspects

Software maintenance is acknowledged to be more difficult and error prone than
the initial development. An important kind of software analysis for this part of
software development is characterization of the effects of a change to a software sys-
tem. Symbolic representations for the parts of the input space and the output space of
a program affected by a given change to the code are useful for testing and evaluating
a modification for conformance with the expected results. Computer-aided
identification of the parts of a specification affected by a given requirements change,
the parts of a design affected by a given specification change, and the parts of the code
affected by a given design change are also important areas for research.

When changing a software system, it is often necessary to reverse an earlier
design decision while preserving the later ones, and to combine the effects of several
changes that were developed independently. Both of these problems can be addressed
by change-merging techniques [3] Automated construction and application of mono-
tonic transformations that can modify specifications and programs in response to prob-
lems with the current behavior of a system is also an important research problem.

4. Conclusion

Advances in software analysis, synthesis and certification are essential for realiz-
ing trusted software systems. Work in this area should be expanded beyond the tradi-
tional domains of testing code in a programming language and proving that programs
satisfy formal specifications, to include software products at al' —*ages of development
from requirements analysis to system evolution. Some key areas for future research
are

ey,

(2)

4

(5)

(6)

Methods for validating requirements and specifications, such as prototyping and
techniques for testing prototypes and specifications relative 10 user perceptions,
Methods for constructing programs that guarantee correctness with respect o for-
ma! specifications, such as program synthesis by meaning-preserving transforma-
tions and certification of application-specific program generation schemes.
Approaches for making formal methods easier to use, reducing the amount of
manual effort required, and for reducing the amount of training and mathematical
skill required for practitioners to apply these methods by designing software tools
that hide theoretical complexities and provide simple interfaces.

Methods relevant to software evolution, such as change merging, monc.onic
transformations for modifying specificatons and programs, and incremental ver-
sions of conventional software analysis, synthesis, and certification methods.
Software analysis techniques addressing properties of parallel, distributed, real-
time, and knowledge-based systems should be explored as well as those for
sequential systems.

Further work on program testing is needed, tv expand the domains in which firm
conclusions about satisfying specifications can be drawn from finite sets of test
cases constructed by definite and effective methods, and to systematically check
assumptions about the operating environment on which the design of a software
system depends.

S. Antoy, P. Forcheri and M. Molfino, ‘‘Specification-based Code Generation™,
in Proc. 23rd Hawaii International Conference on System S5ciences, 1EEE
Computer Society, Jan. 1990, 165-173.

F. Bauer, B. Moller, H. Partsch and P. Pepper, ‘‘Formal Program Construction
by Transformations - Computer-Aided, Intuition-Guided Programming™, JEEE
Trans. on Software Eng. 15, 2 (Feb. 1989), 165-180.

V. Berzins, ‘‘Software Merge: Models and Methods™’, International Journal on
Systems Integration 1, 2 (Aug. 1991), 121-141.

J. Bicevskis, J. Borozovs, U. Straujums, A. Zarins and E. Miller, Jr., *'SMOTL -
A System to Construct Samples for Data Processing Program Debugging’’, IEEE
Trans. on Software Eng. SE-5, 1 (Jan. 1979), 60-66.

D. Good, ‘‘Mechanical Proofs about Computer Programs’, Technical Report
#41, Institute for Computing Science, University of Texas at Austin, Mar. 1981.
W. Howden, Functional Program Testing and Analysis, McGraw-Hill, New
York, 1987.

Lugi, ‘‘Software Evolution via Rapid Prototyping’’, IEEE Computer 22, S (May
1989), 13-25.

A. Mili, W. Xiao-Yang and Y. Qing, ‘‘Specification Methodology: An Integrated
Relational Approach’, Software Practice and Expereience 16, 11 (Nov. 1986),
1003-1030.

INITIAL DISTRIBUTION LIST

Defense Technical Informuanon Center
Cameron Stauon
Alexandna, VA 22314

Dudley Knox Library
Code 52

Nava Postgraduate School
Meaterey, CA 93943-51HX)

Office of Rescarch Administranon
Code 08

Naval Postgraduate School
Monterey, CA 939435100

Chief of Naval Research
8OO N. Quincy Street
Arlington, VA 22302-026%

Center for Naval Analysis
4401 Ford Avenue
Alexanciia, VA 22302-0268

Chief of Naval Operations

Director, Information Systems (OP-945,
Navy Depariment

Washington, D.C. 20350-2000

Chatrman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

Dr. Luqgi

Computer Science Department, Code CSlg
Naval Postgraduate School

Monterey, CA 93943-5100

Dr. Thomas Wu

Computer Science Department, Code CSWq
Naval Postgraduate School

Monterey, CA 93943-5100

10

[%]

